卷四十一
    钦定四库全书
    新法算书卷四十一   明 徐光启等 撰五纬厯指卷六【水星经度】
    水星乃五纬之一其行与金星相似而异于木火土其形亦小于四星故光不甚大不越晨昏二时且不尝见而尝伏是以测其行与定其率及其应古今皆以为难昔西士多録某【厄日多国人】其本国地气清朗得测水星之经纬最彻惜其时所用仪器小所分度数未为精细至近世谷白尼及第谷两家留心厯学但其所居在北极高五十度有竒为欹球之地夏月不辨晨昏冬月雨雪多而?气盛又甚寒冷难于测歩谷白尼因借他人之测以详其理多未经目説虽明而犹难确据后来第谷及其门人深研此道随在推测不惮勤劳既竭心思又殚目力而厯学始全今新厯译其书以为法详列于后
    水星本天象【第一章】
    水星以太阳平行处为本行之心即以太阳之平行为自行之平行如金星无二然其两行之差非太阳两行之差则必有自行本圏而载其次轮又此圈或圏上之行非平有高有低与他星等何以知其然耶曰见其距太阳之大距度时有大小因知其次轮必有逺近也今以图略解其所测于左后详释之【次轮亦名伏见轮】
    古图设甲为地心任取甲乙某线分为五平行又以乙为心取甲乙线五分之一为半径作辛丙壬小圏名曰均圏又于小圏周上取丙?为心作己丁庚戊大圈又作甲乙丁线为两心线取丁?作己癸庚圈是名水星次轮【木火土三星名曰嵗轮金水不然盖以其率非满一年而所差复逺故名次轮又名伏见轮】
    行法甲丁线顺天平
    行每年一周如太阳
    平行无二其自载乙
    ?均轮心及丁次轮
    或伏见轮之心如丁
    心行丁庚戊本天圈
    一年一周其心在辛
    壬丙均轮上而行此
    本天之心有行之理独水星如是而他星不然葢他星有定两心差之数不加不减故其嵗轮心【如丁】所行之迹亦为浑圆圈【见本厯首卷】惟水星小轮心丁所行之迹有如卵形上寛下窄故曰己丁庚本圈之心于甲?时近时逺又时在乙甲线内或时在外如置丁心在两心线上其行之心在辛极逺处丁心行本天一周必行辛壬丙小圈三次丁心在戊最低其行心在丙
    系凡丁心在本轮上平行一周即于小均轮上之行有三周本轮上行一度均轮上行三度【以一周与三次论之则知一度三度】伏见轮心运行图説【第二章】
    丁乙甲戊各号如前甲为心任作午未申等图【用半图简法也】分为六平分于未于申等又作甲未甲申等线人在甲所见伏见轮心丁距本天最高之度又均圏往在辛?为心作丁弧【本天一弧】又因丁甲未角为三十度【先分午丑半周为六分】均轮上从极逺处辛顺天向壬取其三倍即九十度止壬壬为心用辛丁元半径亦作寅一弧截甲未线于寅又以丙均圏极近处为心【丙辛半周乃午申六十度之三倍】作卯弧以巳为心作辰弧以辛为心作巳弧以壬为心作子弧末以丙为心作戌弧共为七?即以曲线聨之得形如图【又于午丑半周细细分画作三十分各有六度又辛壬丙圈分二十分各分有十八度作甲寅等线又小圈各?为心作多弧必可定丁心运行之迹】
    右依前图可解水星之诸行并可齐其所行之异新法亦有水星天本象略引之
    新图用二小均圏如
    他星但辛壬丙载伏
    见圏心小轮之行为
    三倍于丁?大圏上
    之行皆自行数如古
    图无二其乙心留行
    之迹亦与古图之卵
    形相似算法亦同丁心往癸乙心往戊辛心往壬比乙
    及丁疾行为三倍水星体在子往午未各满其周择测水星以定其最高【第三章】
    金星厯曰凡朝夕测得金星距太阳平行两大距度为等者则于两测之两平行中度抄半得为金星两心线之处然其最高低之分尚未定也今水星或有两大距度等者乃若折半不得为两心线之处觉测此星为难古今厯家测得本天一周内伏见轮有多度不见前后多测大距度之差如距地无逺近等故法曰取用朝夕两大距等及前后多日各测之行相反并平视两行有差可知两测两平行中折半为两心之线所在曰相反者何一测之行为盈一测为缩必知在两心线左右曰两
    行有差言一测星在此无近逺处或测十日前后之行为等因可知其引数为等
    如图【字号如前】戊为最低依各圏之行若伏见轮心到子到巳甲子甲巳距地心两视线略等不见近逺故亦不见星距太阳大距度之有大小也试作甲壬线先求甲戊线若干分置丙戊本天半径为十万甲乙置为五六八五【后以测得算】乙丙为乙甲五分之一数之得一一三七以减丙乙得四五四八丙甲也又以丙戊全数内减之得九五四五二乃甲戊线也为星最低距地心之数又置伏见轮心丁在子其心在壬【丁甲子角一百五度从心往壬数其三倍得一周外有九十度即在壬】先用甲乙壬直角形夫形有乙甲乙壬【与乙丙等】两边之数依法求甲壬边得五七九八【用句股法】又求乙甲壬角得十一度十九分次用甲壬子形夫形有壬子全数有壬甲边及壬甲子角【先得乙甲壬又先设丁甲子为一百五十度内减乙甲壬角十度有竒余壬甲己为】一百三十八度四十一分依法求甲子得九五六○六比甲戊多为一四四约为千分之一半若置星在己其心在辛用辛甲己形夫形有辛甲【于甲乙并加五之一得六八二二】辛己两边及辛甲己角【先设戊甲亦六十度用其余以满半周】一百二十度求甲巳得九六四○九比甲戊多一○五七约为百分之一比在子差更大
    系凡水星次轮心在戊最低左右【理同】三十度或四十度内其距地不见大差伏见轮视径亦无小大其大距度亦如之故星在此或左或右不足以定最低之经度分湏星在辰或在卯及其对?始可定也
    古测算水星最高【第四章】
    多禄某总积四千八百五十一年为汉永和三年戊寅【西厯】六月初四夕测得水星经度为鹑首宫七度【用轩辕大星北】当时太阳平行为实沈宫十度半即水星距太阳为二十六度半次测为总积四千八百五十四年为永和六年辛巳【西厯】二月初二日辰测水星在星纪宫十三度半【用心宿大星比】当时太阳平行为?枵宫十度大距度为二十六度半如上测以前后两测两平行折半得寿星宫十度十五分或降娄宫十度十五分乃两心线之处也
    右多禄某所测姑举其二以证所定之处其所多记亲测每以古测相比因谓水星天最高行一百年一度与恒星等及后来再加细测积年既乆觉当时所谓犹非也
    谷白尼记总积六千二百○四年为大明?治三年庚戌【西厯】九月初九日瓦而得【厯学名士】晨测水星经度在鹑尾宫十三度半纬北一度五十分当时太阳平行在鹑尾宫二十六度四十七分【用谷白尼表算】得星距太阳平行十三度十七分此非大距之测故又记曰此时水星将伏前此数日测见顺行于日更近可知水星当时在次轮之上弧
    次测总积六千二百一十七年?治十七年甲子【西厯】正月初九【本方】卯正二刻大火宫十度在天顶测得水星经在星纪宫三度二十分时太阳平行在星纪宫二十七度七分算得星距太阳二十三度四十七分又记本年三月十八日夕测得星经度在降娄宫二十六度六分太阳平行在本宫五度三十九分星距太阳二十七度一十七分
    依上二测谷白尼算得水星最高线本世【总积六千二百十七年前后防年不碍算】在大火宫二十八度半最低在其冲即大梁宫同度
    记今测十端以定厯元【第五章】
    此地谷及其门人所记比古测精细因用为新厯之本
    第一测总积六千二百九十八年为万厯十三年乙酉中厯十月初四日未初【西厯】为十一月十四日卯正四刻测得水星视经在大火宫十三度四分纬北二度十八分时太阳平行为析木宫四度○分十五秒【新法算】星距日为二十度五十六分一十五秒依多测再算得本年最髙行在析木宫初度三十分以平行减之得引数为三度半次轮行为八宫十六度二十二分二十秒推算星视经度得大火宫十二度五十七分比所测少七分
    二测比前测后九日辰初二十分测得星经度在大火宫二十五度三分纬北一度二十五分时太阳平行在析木宫十二度五十三分二十秒引数为○宫十二度二十三分小轮行为九宫十四度二十二分半算得大火宫二十四度五十八分比测少五分
    三测总积六千二百九十九年为万厯十四年丙戌十月二十四日辰初十分【中为九月二十日未正十分】测得星经度在寿星宫二十二度三十二分纬未记太阳平行为大火宫十三度四分半引数为十一宫十二度三十四分次轮行八宫五度六分半以算视行比测少七分
    四测比三测后四日见星在寿星宫二十六度三十二分纬北二度十七分平行为大火宫十六度四十九分半引数为十一宫十六度二十九分次轮行八宫十七度二十七分用算比测少五分
    五测总积六千三百年为万厯十五年丁亥正月初九日申正五十分【中厯为十四年十二月十一日】测得星在?枵宫十七度四十八分纬北○度一分太阳平行为星纪宫二十八度二十二分五十秒引数一宫十六度五十二分次轮行四宫二度二十八分二十秒用算比测少一分
    六测总积六千三百三年为万厯十八年庚寅三月初六日酉正五十分【中厯二月十二日丑时】测星在降娄宫十三度四十四分纬北一度四十二分太阳平行为娵訾宫二十三度引数为三宫二十三度二十分次轮行三宫十一度四十一分十秒用算少测数八分
    七测总积六千三百五年为万厯二十年壬辰二月初三日酉初四十分【中厯正月初一日子正四十分】测星得娵訾宫十二度二十分纬北○度四十七分太阳平行为?枵宫二十二度五十分四十五秒引数二宫二十二度十五分次轮行三宫二十三度八分三十秒用算比测盈九分
    八测总积六千三百六年为万厯二十一年癸巳五月十一日亥初二刻【中厯四月二十二日寅正二刻】测星在实沈宫二十三度十六分纬北二度○分太阳平行在娵訾宫二十九度二十三分引数五宫二十八度五十一分次轮行三宫二十二度四分依算少测十二分
    九测总积六千三百二十年为万厯三十五年丁未四月十五日亥初【中厯四月初一日寅正】测星在大梁宫二十一度五分纬北一度四十分平行为大梁宫三度二十分五十秒引数五宫二度十八分次轮行二宫十五度五十分六秒推算盈所测七分
    十测总积六千三百二十三年为万厯三十八年庚戌十二月初五日戌初【中厯十一月初一日未正】测星在析木宫二度四十二分纬未纪太阳平行在析木宫二十四度四十分引数初宫二十三度三十四分次轮行八宫十度十一分推算少测七分
    右十测如法推算盈缩大较不过十二分其差甚防非若右表未经亲测者真可用为水星厯元之测又本方向北凡星纬在南难见难测故上不测皆纬北焉定最高处及其行【第六章】
    总积六千二百九十八年为万厯十三年乙酉第谷测算精宻定本年最髙在析木宫初度三十分以古测总积四千四百四十九年【多禄某所记】为周赧王五十年丙申【西厯】十一月十五日晨见水星在大火宫二度三十五分太阳平行大火宫十九度五十六分半【用古表】纬南为二度二十分依此测及后屡测【多禄某所记本世距周赧王四百年后有多测多算今不详译省文也】得水星当时最高在寿星宫六度五分
    两测中积为一千八百四十九年计两测中积最高之行为五十四度二十五分【析木宫初度半内减去寿星宫六度五分得数】以中积最高度分化秒为实以积年数为法除之得一年最高行为一分四十五秒有竒有一年则百年千年俱有成表如以万厯十三年之行加之得崇祯元年最高行之应以平行内减去最高得引数説见后
    水星伏见轮半径大小【第七章】
    古多禄某用二测其一为总积四千八百四十七年十月初三日晨测得水星伏见轮心在本天最高算求距太阳大距度为十九度○三分太阳平行在寿星宫九度十五分多禄某时最高在大火宫二度此测未到最高少二十三度因水星天之象最高及其冲前后一宫于地不见逺近大差见上文
    其二夕测【为次年四月初五】水星次轮心在最高冲大距度为二十三度十五分平行为降娄宫十一度五分此测亦未到高冲少二十一度与上测相对
    系凡大距度为小者其次轮心必在载圏之高若距度为大者其心必低先定两心线如上测星在降娄距大在寿星距小
    如图甲地心壬本天心戊为最高丙为其冲次轮心在
    戊最高星
    在巳为戊
    甲巳距平
    行极大角
    【人在甲见星在巳视】
    【星距戊平行之度数】上测得十九度○三分又次轮心在丙最高冲视距太阳平行大距度为庚甲丙角依上测得二十三度十五分作戊己丙庚各线于甲己甲庚成直角依三角形法甲戊己为直角形有己直角有甲角大距度自亦有戊角己甲戊之余即为七十度五十七分有三角求戊己戊甲之比例设戊甲十万戊己即为十万分之三二六二九【正?数也】
    又甲丙庚形有三角【因直角形之理有甲乙角自有丙角】求甲丙丙庚两腰之比例设甲丙十万丙庚为十万分之三九四七四【甲角之正?】
    先定丙庚戊己两圏半径为等者【以上下两次轮无二】今以三率法通之设甲戊十万戊己或丙庚为二三六二九丙甲为八二六二五戊甲甲丙并之折半得九一三四二即戊壬线也
    今有戊壬戊甲戊己同类之三线又设戊壬本天半径为十万全数求他线之数以法得戊甲为一○九四七九减戊壬全数余九四七九乃壬甲两心差之数也又壬甲数以六除之得一五八○乃载本天心小轮之半径説见水星本天象论戊己为三五七二乃伏见轮半径也
    多禄某依亲测得水星各圏比例如此然所记载测数中有可疑【恒星及太阳之行各不精细】第谷及其门人因加宻测宻算依上记十测设戊壬全数戊己为三八五○○【丁庚同数】壬甲为六八二二取壬甲六之一即一一三七为壬心所行圏之半周
    系水星近于地为本天十万分之五四六七二极逺为一四五三二一
    算水星经度用三角形试法【第八章】
    用上所记第五测时刻以三角形及上定各圏之数求水星经度【用新图】当时查表得太阳平行在星纪宫二十八度二十二分半水星最髙在析木宫初度二十九分半两数相减得引数为五十七度五十三分图上为庚乙己丙两弧之度【绘图及其行之数见上二章】此引数三倍之得一百七十三度三十九分为戊丁弧丁乃伏见轮心作壬次轮圏从壬极逺顺算得一百二十二度二十八分至辛丁丙乙形有丁丙乙角【戊丁弧以满半周去之余】六度二十一分有丙乙【上定两心差六分之五即五六八五】及丙丁【两心差六分之一即一一三七】两邉求丙乙丁角得一度三十五分又求丁乙邉得四五五一二甲乙丁形有甲乙丁角【己丙弧或己乙丙角内减去丙丁乙角余丁乙己其余为】
    一百二十三度四十二分【凡引
    数为六十度以下用减六十度至一百二十度用加一百
    二十度至一百八十度用减一百八十度至二百四十度
    用加又自二百四十至三百度用减三百至三百六十度
    用加】又有甲乙全数【半径】及丁乙
    【上得数】两邉求乙甲丁角为二
    度七分又求甲丁邉得一○
    二六○○
    三丁辛甲形有丁辛次轮半径【前所定三八五○○】有甲丁丙邉及辛丁甲角【次轮为癸辛弧加壬癸弧或壬丁癸角或丁甲乙角皆为同得壬辛弧其余辛午】五十五度二十五分求乙甲辛角得二十一度二十九分乃次均数次轮之视差也因次轮行在前半周法宜用加得?枵宫十七度四十五分比所测缩三分
    若以测法求丁辛次轮半径亦可得之则于丁辛甲形中设丁甲邉丁甲辛角【以表得乙甲庚引数角内减丁甲乙本天均数得丁甲庚角以测得辛甲庚角相减得丁甲辛视差之角】及壬辛弧或辛丁甲角依法求之
    若以引数及各圏半径从小轮上水星本行处用下图各三角形之法亦得算癸丁辛角有假如【见十章】水星平行率【用古今二测 第九章】
    以测求伏见轮上之行宜择星近太阳非留行或大距度之处葢留时伏见轮上之行人自觉其大距度多日不变然星更行故测以得近太阳者为确
    古多禄某所记总积四千四百四十九年为周赧王五十年丙申【西厯】十一月十五日卯初在本方测得水星经度为大火宫二度三十五分纬南为二度二十分当时太阳平行在大火宫十九度五十六分半时水星最髙在寿星宫六度五分两数相减得四十三度五十一分半乃水星之引数也又平行视行相减得十七度二十一分半
    设引数及各圏之半径与星视行距太阳之平行求水星体在伏见圏之度分【星体距伏见轮极逺之处若干】用新图诸号如上
    一庚乙己丙两弧各为引数之度戊丁弧为引数之三倍一百三十一度四十九分三十秒
    二丙丁乙形有丙丁丙乙两边各圏半径及丁丙乙角【戊丁弧以满半周之余】四十八度十分求丁乙边得十万分之【全数】五○○二又求丙乙丁角得九度四十五分
    三己丙弧或己乙丙角内减去
    丁乙丙角余丁乙己为三十四
    度五十六分半其余以满半周
    为丁乙甲角是为一百四十五
    度四十八分半
    四丁乙甲形有甲乙【全数】乙丁【前所】
    【算】两腰及丁乙甲角求丁甲边为一○三九○二又求丁甲乙角得一度三十三分乃均数之度分也其号为减【引数未过半周】减之得丁甲庚角为四十二度二十四分又以最髙之宫度加之得丁?【次轮心】在大火宫十八度二十四分先测水星在本宫二度三十五分相减得较为十五度四十九分乃次轮之视差也均数也图上为丁甲辛角测为晨刻则水星在太阳后次轮右边
    五丁辛甲形有丁甲【先所算】丁辛【先所设】两边及辛甲丁角【次轮视角】求辛丁甲角得三十一度三十三分乃辛丁午角或辛午弧水星体距小轮极近处午?之度分又加半周【一百八十度】得二百一十一度有竒即壬午辛弧然所定次轮极逺非逺于地心乃比平行为逺【故图中命作癸午线与巳甲平行而壬丁癸角恒于乙甲丁均角为等】则因先均数类亦均之若加加之若减减之今减得癸午辛弧为二百一十度○分乃当时水星次轮上之行
    本章多禄某所记及前第五章所记第谷十测中第五测两测相比中积为一千八百五十一年又五十五日十一小时依法化年为日【总积平年为三百六十五日第四年闰一日为三百六十六日】得六十七万六千一百三十二日为法
    两测次轮之行相减得较为八十三度二十五分因今测小则以遡到古测或满全周少八十三度有竒或满全周外多二百七十六度三十五分中积时水星行满次轮全周为五千八百三十六转外二百七十六度有竒化作秒得七五六四四九七○○○为实以前法入实而一得一日之行为一一一八四秒为竒约之得水星次轮上一日之行为三度六分二十四秒有竒【欲穷其数各再化作忽算之】有一日可得一年百年之行又以分法可算一时一分之行
    水星一小时行七分四十六秒
    一日行三度六分二十四秒
    一平年行三全周外有五十三度五十三分三十二秒一闰年三全周外行五十七度三分五十六秒一百一十五日二十一小时三分二十二秒行小轮一周
    新法算书巻四十一


用手机扫一下二维码,在手机上阅读或分享到微信朋友圈

图书分类