卷三十六
    钦定四库全书
    御制数理精蕴下编卷三十六
    末部六
    借根方比例【体类】
    体类
    设如有扁方体髙十八尺若将体积加六倍则髙与长阔皆相等问长阔之各一边及体积几何法借一根为长阔之各一边数以一根自乘得一平方为扁方体之面积再以髙十八尺乘之得十八平方为扁方体之体积又以一根与一平方相乘得一立方为扁方体积之六倍乃以扁方体之体积十八平方六因之得一百零八平方是为一立方与一百零八平方相等两边各降二位得一根与一百零八尺相等卽扁方体之长阔各一边数也以一百零八尺自乘得一万一千六百六十四尺再以十八尺乘之得二十万零九千九百五十二尺为扁方体积六因之得一百二十五万九千七百一十二尺与毎边一百零八尺自乘再乘之立方积相等此扁方体边线比例法也葢两体之底面积旣同则其体积之比例同于其髙之比例今扁方体之长阔各一边旣与正方体之毎一边等而正方体积为扁方体积之六倍则其髙亦必为六倍故以扁方体之髙数六因之卽得长阔之各一边数也
    设如有一长方体髙三尺五寸又有一正方体其每一面积与长方体之底面积等而长方体积为正方体积之五倍问正方体之一边及体积各几何法借一根为正方体毎边之数以一根自乘得一平方为正方体之面积亦卽长方体之底面积以一平方与髙三十五寸相乘得三十五平方为长方体之体积又以一根自乘再乘得一立方为正方体之体积长方体积旣为正方体之五倍乃以一立方五因之得五立方而与三十五平方为相等两边各降二位得五根与三十五寸相等五根旣与三十五寸相等则一根必与七寸相等卽正方体之毎一边之数也以七寸自乘再乘得三百四十三寸卽正方体之体积又以七寸自乘得四十九寸再以三十五寸乘之得一千七百一十五寸卽长方体之体积为正方体积之五倍此一长方体一正方体同底比例法也葢两体之底面积旣同则其体积之比例同于其髙之比例今正方体之每一面积旣与长方体之底面积等而长方体积为正方体积之五倍则其髙亦必为五倍故长方体之髙之五分之一卽正方体之毎一边之数也
    设如有一正方面形又有一正方体形但知正方面毎边为正方体毎边之八倍而正方面积与正方体积相等问边线积数各若干
    法借一根为正方体毎边之数则正方面毎边之数为八根以一根自乘再乘得一立方为正方体积以八根自乘得六十四平方为正方面积是为一立方与六十四平方相等两边各降二位得一根与六十四尺相等卽正方体毎边之数八因之得五百一十二尺卽正方面毎边之数以五百一十二尺自乘得二十六万二千一百四十四尺为正方面积以六十四尺自乘再乘亦得二十六万二千一百四十四尺为正方体积两数相等也【此一平方一立方边数积数比例法】
    设如有带两纵不同立方体其髙与阔之比例同于四与六阔与长之比例同于六与九其髙与阔相乘之数为长数之四倍问髙阔长各几何
    法借四根为髙数六根为阔数九根为长数以髙四根与阔六根相乘得二十四平方为长数之四倍乃以长数九根四因之得三十六根是为二十四平方与三十六根相等两边各降一位得二十四根与三十六尺相等二十四根旣与三十六尺相等则四根必与六尺相等卽髙数六根必与九尺相等卽阔数九根必与一十三尺五寸相等卽长数以髙六尺与阔九尺相乘得五十四尺四归之得一十三尺五寸与长数相等也【此带两纵不同立方边线面积比例法】
    设如有带两纵不同立方体长二十四尺髙与阔和五十二尺其髙与阔相乘之积与长自乘之积等问髙阔各若干
    法借一根为髙数则阔数为五十二尺少一根以髙一根与阔五十二尺少一根相乘得五十二根少一平方又以长二十四尺自乘得五百七十六尺此二数为相等乃以五百七十六尺为长方积以五十二根作五十二尺为长阔和用带纵和数开平方法算之得阔十六尺为一根之数卽立方之髙数与髙阔和五十二尺相减余三十六尺卽立方之阔数以髙十六尺与阔三十六尺相乘得五百七十六尺与长二十四尺自乘之数相等也【此带两纵不同立方边线与面积比例法】
    设如有带两纵不同立方体髙十二寸长比阔多十寸其长与阔相乘之积与髙自乘之积等问长阔各若干
    法借一根为阔数则长数为一根多十寸以阔一根与长一根多十寸相乘得一平方多十根以髙十二寸自乘得一百四十四寸此二数为相等乃以一百四十四寸为长方积以十根作十寸为长阔较用带纵较数开平方法算之得阔八寸为一根之数卽立方之阔数加长比阔多十寸得十八寸卽立方之长数以阔八寸与长十八寸相乘得一百四十四寸与髙十二寸自乘之数相等也【此带两纵不同立方边较与面积比例法】
    设如有带两纵不同立方体长比阔多四寸阔比髙多二寸其体积比髙自乘再乘之正方体多一百七十六寸问长阔髙各几何
    法借一根为髙数则阔数为一根多二寸长数为一根多六寸以髙一根与阔一根多二寸相乘得一平方多二根再以长一根多六寸乘之得一立方多八平方多十二根内减髙数一根自乘再乘之一立方余八平方多十二根与一百七十六寸相等八平方多十二根旣与一百七十六寸相等则一平方多一根半必与二十二寸相等乃以二十二寸为长方积以一根半作一寸五分为长阔较用带纵较数开平方法算之得阔四寸为一根之数卽立方之髙数加阔比髙多二寸得六寸卽立方之阔数再加长比阔多四寸得十寸卽立方之长数以长阔相乘以髙再乘得二百四十寸为立方体积内减髙四寸自乘再乘之六十四寸余一百七十六寸以合原数也【此带两纵不同立方边较与积较比例法】
    设如一长方池深二十尺长阔和六十尺其体积一万七千二百八十尺问长阔各若干
    法借一根为阔数则长数为六十尺少一根以阔一根与长六十尺少一根相乘得六十根少一平方以深二十尺再乘得一千二百根少二十平方与一万七千二百八十尺相等一千二百根少二十平方旣与一万七千二百八十尺相等则六十根少一平方必与八百六十四尺相等乃以八百六十四尺为长方积以六十根作六十尺为长阔和用带纵和数开平方法算之得阔二十四尺为一根之数卽池之阔数与长阔和六十尺相减余三十六尺卽池之长数以长阔相乘以深再乘得一万七千二百八十尺以合原数也【此带两纵不同立方知一边与两边和相求法】
    设如一长方池深三十尺长比阔多十尺其体积七万一千二百八十尺问长阔各若干
    法借一根为阔数则长数为一根多十尺以阔一根与长一根多十尺相乘得一平方多十根再以深三十尺乘之得三十平方多三百根与七万一千二百八十尺相等三十平方多三百根旣与七万一千二百八十尺相等则一平方多十根必与二千三百七十六尺相等乃以二千三百七十六尺为长方积以十根作十尺为长阔较用带纵较数开平方法算之得阔四十四尺为一根之数卽池之阔数加长比阔多十尺得五十四尺卽池之长数也以长阔相乘以深再乘得七万一千二百八十尺以合原数也【此带两纵不同立方知一边与两边较相求法】
    设如有带两纵不同立方体长阔髙共五十八尺长比阔多六尺其对角斜线自乘之数为一千一百五十六尺问长阔髙各几何
    法借一根为阔数则长数为一根多六尺以长阔两数相加得二根多六尺与长阔髙共五十八尺相减余五十二尺少二根为髙数以阔一根自乘得一平方为阔自乘之数以长一根多六尺自乘得一平方多十二根多三十六尺为长自乘之数以髙五十二尺少二根自乘得二千七百零四尺少二百零八根多四平方为髙自乘之数三自乘数相加得二千七百四十尺少一百九十六根多六平方与对角线自乘之一千一百五十六尺相等两边各加一百九十六根得二千七百四十尺多六平方与一千一百五十六尺多一百九十六根相等两边各减一千一百五十六尺得一千五百八十四尺多六平方与一百九十六根相等一千五百八十四尺多六平方旣与一百九十六根相等则二百六十四尺多一平方必与三十二根又六分根之四相等乃以二百六十四尺为长方积以三十二根六分根之四作三十二尺又六分尺之四为长阔和用带纵和数开平方法算之得长十八尺为一根之数卽立方之阔加长比阔多六尺得二十四尺卽立方之长长阔相加得四十二尺与长阔髙共五十八尺相减余十六尺卽立方之髙也以髙十六尺自乘得二百五十六尺以阔十八尺自乘得三百二十四尺以长二十四尺自乘得五百七十六尺三自乘数相加得一千一百五十六尺与对角斜线自乘之数相等也【此带两纵不同立方边线面积和较相求法】
    设如有带两纵不同立方体其长阔髙为相连比例三率长为首率阔为中率髙为末率共五十七寸其六面积共二千零五十二寸问长阔髙各几何法借一根为长数则阔髙之共数为五十七寸少一根又以六面积共二千零五十二寸折半得一千零二十六寸为三面积共数以长阔髙共五十七寸除之得一十八寸为阔数【因长为首率阔为中率髙为末率故其三面积一为首率乘中率一为末率乘中率一为首率乘末率而首率乘末率之数与中率自乘之数等则此三而积相合卽为首率中率末率之共数乘中率之数矣故以长阔髙之共数除之卽得中率为阔也】以阔一十八尺与阔髙之共数五十七寸少一根相减余三十九寸少一根为髙数乃以首率长一根与末率髙三十九寸少一根相乘得三十九根少一平方与中率阔十八寸自乘之三百二十四寸相等乃以三百二十四寸为长方积以三十九根作三十九寸为长阔和用带纵和数开平方法算之得长二十七寸为一根之数卽立方之长数与髙长和三十九寸相减余一十二寸卽立方之髙数以长二十七寸与阔十八寸之比同于阔十八寸与髙十二寸之比为相连比例三率也【此带两纵不同立方边线面积相和比例法】
    设如有带两纵不同立方体其髙与阔之比例同于一与二阔与长之比例同于二与三以髙自乘再乘之数与阔自乘再乘之数相加比原体积多一千零二十九寸问长阔髙各几何
    法借一根为髙数则阔数为二根长数为三根以阔二根与长三根相乘得六平方再以髙一根乘之得六立方为原体积又以髙一根自乘再乘得一立方以阔二根自乘再乘得八立方相并得九立方内减原体积六立方余三立方与一千零二十九寸相等三立方旣与一千零二十九寸相等则一立方必与三百四十三寸相等乃以三百四十三寸开立方得七寸为一根之数卽立方之髙数倍之得十四寸卽立方之阔数三因之得二十一寸卽立方之长数以长二十一寸与阔十四寸相乘得二百九十四寸再以髙七寸乘之得二千零五十八寸为原体积又以髙七寸自乘再乘得三百四十三寸阔十四寸自乘再乘得二千七百四十四寸相并得三千零八十七寸与原体积相减余一千零二十九寸以合原数也【此带两纵不同立方边线体积比例法】
    设如有甲乙丙三正方体甲方边与乙方边之比例同于二与三乙方积比甲方积多一百五十二寸丙方积比乙方积多七百八十四寸问三正方体之边数各若干
    法借二根为甲方毎边之数则乙方毎边之数为三根以二根自乘再乘得八立方为甲方之体积以三根自乘再乘得二十七立方为乙方之体积两体积相减余一十九立方与一百五十二寸相等十九立方旣与一百五十二寸相等则一立方必与八寸相等乃以八寸开立方得二寸为一根之数倍之得四寸卽甲方毎边之数三因之得六寸卽乙方毎边之数自乘再乘得二百一十六寸加七百八十四寸得一千寸开立方得十寸卽丙方毎边之数也【此三正方体边线体积比例法】
    设如有带两纵不同立方体髙比阔为五分之一阔比长亦为五分之一体积六十一万四千一百二十五尺问髙阔长各几何
    法借一根为髙数则阔数为五根长数为二十五根以阔五根与长二十五根相乘得一百二十五平方再以髙一根乘之得一百二十五立方与六十一万四千一百二十五尺相等一百二十五立方旣与六十一万四千一百二十五尺相等则一立方必与四千九百一十三尺相等乃以四千九百一十三尺开立方得十七尺为一根之数卽立方之髙以五乘之得八十五尺卽立方之阔以二十五乘之得四百二十五尺卽立方之长也乃以长阔相乘得三万六千一百二十五尺再以髙乘之得六十一万四千一百二十五尺以合原数也【此带分比例开立方法】
    设如有一大长方体其阔三倍于髙其长三倍于阔又有一小长方体比大长方体髙为二分之一阔为三分之二长为九分之七小长方体积二万三千六百二十五寸问大小二长方体之长阔髙各几何
    法借一根为大长方体之髙则大长方体之阔为三根大长方体之长为九根小长方体之髙为半根小长方体之阔为二根小长方体之长为七根乃以长七根与阔二根相乘得一十四平方再以髙半根乘之得七立方为小长方体积与二万三千六百二十五寸相等七立方旣与二万三千六百二十五寸相等则一立方必与三千三百七十五寸相等乃以三千三百七十五寸开立方得十五寸为一根之数卽大长方体之髙三因之得四十五寸卽大长方体之阔又以三因之得一百三十五寸卽大长方体之长以大长方体之髙折半得七寸五分卽小长方体之髙以大长方体之阔三归二因得三十寸卽小长方体之阔以大长方体之长九归七因得一百零五寸卽小长方体之长以小长方体之长阔相乘再以髙乘之得二万三千六百二十五寸以合原数也【此带分比例开立方法】
    设如有人买马三次第二次比第一次多一倍第三次比第二次多一倍以第三次马数四分之一与第二次马数之一半相乘又与第一次马数三分之一相乘得六千五百六十一匹问三次所买马数各若干
    法借三根为第一次买马之数【第一次分母数】则第二次买马之数为六根第三次买马之数为十二根以第三次四分之一三根与第二次之一半三根相乘得九平方又与第一次三分之一一根相乘得九立方与六千五百六十一匹相等九立方旣与六千五百六十一匹相等则一立方必与七百二十九匹相等乃以七百二十九匹开立方得九匹为一根之数三因之得二十七匹为第一次买马之数倍之得五十四匹为第二次买马之数又倍之得一百零八匹为第三次买马之数以第三次四分之一二十七匹与第二次一半二十七匹相乘得七百二十九匹再以第一次三分之一九匹乘之得六千五百六十一匹以合原数也【此带分比例开立方法】
    设如有马牛羊各不知数但知牛数比马数多四羊数与马牛相乘之数等马毎匹之价与牛数等牛毎头之价与马数等羊毎只之价比马毎匹价少十两而羊之共价为一百九十二两问马牛羊及价银各若干
    法借一根为马数则牛数为一根多四以马数一根与牛数一根多四相乘得一平方多四根为羊数马价与牛数等为一根多四两则羊价为一根少六两以羊数一平方多四根与羊价一根少六两相乘得一立方少二平方少二十四根为羊之共价与一百九十二两相等乃以一百九十二两为磬折扁方体积用带纵开立方法算之得八为一根之数卽马数亦卽牛毎头之价为八两也加牛比马多四得十二为牛数亦卽马毎匹之价为十二两也以马数八与牛数十二相乘得九十六为羊数以羊数九十六归除羊共价一百九十二两得二两为羊毎只价比马一匹之价少十两也【此磬折扁方体求边法】
    设如有马骡运重其共马数比马毎匹所防之数多二十骡毎匹所防之数比共马数多三十其共骡数与马所防之共数等但知骡共防一千一百万斤问马数骡数及所防之斤数各若干
    法借一根为共马数则马毎匹所防之斤数为一根少二十斤骡毎匹所防之数为一根多三十斤以共马数一根与马毎匹防一根少二十斤相乘得一平方少二十根为马所防之共数亦卽共骡数再以骡毎匹防一根多三十斤乘之得一立方多十平方少六百根为骡所防之共数与一千一百万斤相等乃以一千一百万斤为磬折长方体积用带纵开立方法算之得二百二十为一根之数卽共马数减二十余二百斤为马毎匹所防之数以共马二百二十匹与马毎匹所防之二百斤相乘得四万四千斤为马所防之共数亦卽共骡数以共骡四万四千匹归除一千一百万斤得二百五十斤为骡毎匹所防之数比共马数二百二十多三十也【此磬折长方体求边法】
    设如有大小二正方体边数共二尺六寸体积共五千零九十六寸问二正方体边数体积各几何法借一根为小方毎边之数则大方毎边之数为二十六寸少一根以一根自乘再乘得一立方为小方之体积以二十六寸少一根自乘再乘得一万七千五百七十六寸少二千零二十八根多七十八平方少一立方为大方之体积两体积相加得一万七千五百七十六寸少二千零二十八根多七十八平方与五千零九十六寸相等两边各加二千零二十八根得一万七千五百七十六寸多七十八平方与五千零九十六寸多二千零二十八根相等两边各减五千零九十六寸得一万二千四百八十寸多七十八平方与二千零二十八根相等一万二千四百八十寸多七十八平方旣与二千零二十八根相等则一百六十寸多一平方必与二十六根相等乃以一百六十寸为长方积以二十六根作二十六寸为长阔和用带纵和数开平方法算之得阔十寸为一根之数卽小方毎边之数与共边二十六寸相减余一十六寸卽大方毎边之数以十寸自乘再乘得一千寸卽小方之体积以十六寸自乘再乘得四千零九十六寸卽大方之体积两体积相加共五千零九十六寸以合原数也【此二正方体有边和积和求边法】
    设如有大小二正方体大方边比小方边多四尺大方积比小方积多一千二百一十六尺问二正方体边数体积各几何
    法借一根为小方毎边之数则大方毎边之数为一根多四尺以一根自乘再乘得一立方为小方之体积以一根多四尺自乘再乘得一立方多十二平方多四十八根多六十四尺为大方之体积两体积相减得十二平方多四十八根多六十四尺与一千二百一十六尺相等两边各减六十四尺得十二平方多四十八根与一千一百五十二尺相等十二平方多四十八根旣与一千一百五十二尺相等则一平方多四根必与九十六尺相等乃以九十六尺为长方积以四根作四尺为长阔较用带纵较数开平方法算之得阔八尺为一根之数卽小方每边之数加四尺得一十二尺卽大方毎边之数以八尺自乘再乘得五百一十二尺卽小方之体积以一十二尺自乘再乘得一千七百二十八尺卽大方之体积两体积相减余一千二百一十六尺以合原数也【此二正方体有边较积较求边法】
    设如有大小二正方体大方边比小方边多二尺体积共一千零七十二尺问二正方体边数体积各几何
    法借一根为小方毎边之数则大方毎边之数为一根多二尺以一根自乘再乘得一立方为小方之体积以一根多二尺自乘再乘得一立方多六平方多十二根多八尺为大方之体积两体积相加得二立方多六平方多十二根多八尺与一千零七十二尺相等两边各减去八尺得二立方多六平方多十二根与一千零六十四尺相等二立方多六平方多十二根旣与一千零六十四尺相等则一立方多三平方多六根必与五百三十二尺相等乃以五百三十二尺为磬折长方体积用带纵开立方法算之得七尺为一根之数卽小方毎边之数加二尺得九尺卽大方每边之数以七尺自乘再乘得三百四十三尺卽小方之体积以九尺自乘再乘得七百二十九尺卽大方之体积两体积相加得一千零七十二尺以合原数也【此二正方体有边较积和求边法】
    设如有大小二正方体边数共十四尺大方比积小方积多二百九十六尺问二正方体之边数体积各几何
    法借一根为小方每边之数则大方每边之数为十四尺少一根以一根自乘再乘得一立方为小方之体积以十四尺少一根自乘再乘得二千七百四十四尺少五百八十八根多四十二平方少一立方为大方之体积两体积相减得二千七百四十四尺少五百八十八根多四十二平方少二立方与二百九十六尺相等两边各加二立方又加五百八十八根得二立方多五百八十八根多二百九十六尺与二千七百四十四尺多四十二平方相等两边各减去二百九十六尺又各减去四十二平方得二立方少四十二平方多五百八十八根与二千四百四十八尺相等二立方少四十二平方多五百八十八根旣与二千四百四十八尺相等则一立方少二十一平方多二百九十四根必与一千二百二十四尺相等乃以一千二百二十四尺为磬折扁方体积用带纵开立方法算之得六尺为一根之数卽小方毎边之数与共边数十四尺相减余八尺卽大方每边之数以六尺自乘再乘得二百一十六尺为小方之体积以八尺自乘再乘得五百一十二尺为大方之体积两体积相减余二百九十六尺以合原数也【此二正方体有边和积较求边法】
    设如勾股积二百四十尺股?较四尺问勾股?各几何
    法借一根为股数则?为一根多四尺以一根自乘得一平方为股自乘之数以一根多四尺自乘得一平方多八根多十六尺为?自乘之数内减去股自乘之一平方余八根多十六尺为勾自乘之数凡勾自乘之数与勾股相乘之数及股自乘之数为相连比例三率乃以首率勾自乘之八根多十六尺与末率股自乘之一平方相乘得八立方多十六平方又以勾股积二百四十尺倍之得四百八十尺为中率自乘得二十三万零四百尺是为八立方多十六平方与二十三万零四百尺相等八立方多十六平方旣与二十三万零四百尺相等则一立方多二平方必与二万八千八百尺相等乃以二万八千八百尺为长方体积用带纵开立方法算之得三十尺为一根之数卽股数加股?较四尺得三十四尺卽?数又以股三十尺除倍积四百八十尺得十六尺卽勾数也【此有勾股积有股?较求勾股?法】
    设如勾股积二百四十尺勾?和五十尺问勾股?各几何
    法借一根为勾数则?为五十尺少一根以一根自乘得一平方为勾自乘之数以五十尺少一根自乘得二千五百尺少一百根多一平方为?自乘之数内减去勾自乘之一平方余二千五百尺少一百根为股自乘之数凡勾自乘之数与勾股相乘之数及股自乘之数为相连比例三率则以首率勾自乘之一平方与末率股自乘之二千五百尺少一百根相乘得二千五百平方少一百立方又以勾股积二百四十尺倍之得四百八十尺为中率自乘得二十三万零四百尺是为二千五百平方少一百立方与二十三万零四百尺相等二千五百平方少一百立方旣与二十三万零四百尺相等则一平方少二十五分立方之一必与九十二尺一十六寸相等乃以九十二尺一十六寸为扁方体积用带纵开立方法算之得一十六尺为一根之数卽勾数与勾?和五十尺相减余三十四尺卽?数又以勾十六尺除倍积四百八十尺得三十尺卽股数也【此有勾股积有勾?和求勾股?法】
    设如有数十万为一率作相连比例四率使一率与四率相加与二率三倍等问二率三率四率各几何
    法借一根为二率以二率一根自乘得一平方以一率十万除之得十万分平方之一为三率又以二率一根与三率十万分平方之一相乘得十万分立方之一以一率十万除之得一百亿分立方之一为四率将四率俱以百亿乘之则一率为一千兆二率为一百亿根三率为一十万平方四率为一立方【因四率为百亿分立方之一以百亿乘之则得一整立方故将余三率俱以百亿乘之其比例始相当也】乃以一率与四率相加得一千兆多一立方又以二率三倍之得三百亿根是为三百亿根与一千兆多一立方相等两边各减去一立方得三百亿根少一立方与一千兆相等乃以一千兆为实以三百亿根为法用割圜内新增益实归除法算之得三万四千七百二十九为一根之数卽相连比例之第二率也以二率自乘一率除之得一万二千零六十一为相连比例之第三率又以二率与三率相乘一率除之得四千一百八十七为相连比例之第四率乃以一率与四率相加得一十万零四千一百八十七与二率之三倍相等也【此卽求圜内容十八边法】
    设如有数十万为一率作相连比例四率使一率与四率相加与二率两倍再加一三率之数等问二率三率四率各几何
    法借一根为二率以二率一根自乘得一平方以一率十万除之得十万分平方之一为三率以二率一根与三率十万分平方之一相乘得十万分立方之一以一率十万除之得一百亿分立方之一为四率将四率俱以百亿乘之则一率为一千兆二率为一百亿根三率为一十万平方四率为一立方乃以一率与四率相加得一千兆多一立方又以二率倍之得二百亿根加一三率得二百亿根多十万平方是为二百亿根多十万平方与一千兆多一立方相等两边各减去一立方得二百亿根多十万平方少一立方与一千兆相等乃以一千兆为实以二百亿根为法用割圜内益实兼减实归除法算之得四万四千五百零四为一根之数卽相连比例之第二率也以二率自乘一率除之得一万九千八百零六为相连比例之第三率又以二率与三率相乘一率除之得八千八百一十四为相连比例之第四率乃以一率与四率相加得一十万零八千八百一十四与二率两倍加一三率之数相等也【此卽求圜内容十四边法】
    设如有大小二正方面大方毎边为小方毎边之二倍若以两面积相乘得五万八千五百六十四尺问二方边面积各几何
    法借一根为小方毎边之数则大方毎边数为二根以一根自乘得一平方为小方之面积以二根自乘得四平方为大方之面积以一平方与四平方相乘得四三乘方为两方面积相乘之数与五万八千五百六十四尺相等四三乘方旣与五万八千五百六十四尺相等则一三乘方必与一万四千六百四十一尺相等乃以一万四千六百四十一尺为三乘方积用开三乘方法算之得十一尺为一根之数卽小方每边之数倍之得二十二尺卽大方每边之数以十一尺自乘得一百二十一尺卽小方之面积以二十二尺自乘得四百八十四尺卽大方之面积两面积相乘得五万八千五百六十四尺以合原数也【此开三乘方法】
    设如有解钱粮船不言数但知每船所载银鞘之数比船数加一倍每鞘内银数与共鞘数等其共银数为五百三十四万五千三百四十四两问船数鞘数各若干
    法借一根为船数则每船所载鞘数为二根以一根与二根相乘得二平方为共鞘数亦为每鞘内银数自乘得四三乘方与五百三十四万五千三百四十四两相等四三乘方旣与五百三十四万五千三百四十四两相等则一三乘方必与一百三十三万六千三百三十六两相等乃以一百三十三万六千三百三十六两为三乘方积用开三乘方法算之得三十四为一根之数卽船数倍之得六十八卽每船之鞘数以船数三十四与每船所载鞘数六十八相乘得二千三百一十二为共鞘数亦卽每鞘内之银数自乘得五百三十四万五千三百四十四两以合原数也【此开三乘方法】
    设如有一正方又有一长方二方面积共二十三万六千一百九十六尺长方之长比正方面积多二十四尺长方之阔比正方面积少二十尺问二方边面积各几何
    法借一根为正方每边之数自乘得一平方为正方之面积则长方之长为一平方多二十四尺长方之阔为一平方少二十尺长阔相乘得一三乘方多四平方少四百八十尺为长方面积加正方面积之一平方得一三乘方多五平方少四百八十尺为二方之共面积与二十三万六千一百九十六尺相等两边各加四百八十尺得一三乘方多五平方与二十三万六千六百七十六尺相等乃以二十三万六千六百七十六尺为带纵三乘方积用带纵开三乘方法算之得二十二为一根之数卽正方每边之数自乘得四百八十四尺为正方面积加二十四尺得五百零八尺为长方之长减二十尺得四百六十四尺为长方之阔长阔相乘得二十三万五千七百一十二尺为长方面积两面积相加得二十三万六千一百九十六尺以合原数也【此带纵开三乘方法】
    设如有一长方其面积五百二十七丈又有大小二正方其面积共一千二百五十丈大正方边与长方之长等小正方边与长方之阔等问长方之长阔各几何
    法借一根为大方每边之数自乘得一平方为大方之面积则小方之面积为一千二百五十丈少一平方此大方面积与长方面积及小方面积为相连比例三率乃以首率大方面积一平方与末率小方面积一千二百五十丈少一平方相乘得一千二百五十平方少一三乘方又以长方面积五百二十七丈为中率自乘得二十七万七千七百二十九丈此两数为相等乃以二十七万七千七百二十九丈为带纵三乘方积用带纵开三乘方法算之得三十一为一根之数卽大方每边之数亦卽长方之长以长三十一丈除长方面积五百二十七丈得十七丈卽长方之阔亦卽小正方每边之数乃以三十一丈自乗得九百六十一丈为大方面积以十七丈自乘得二百八十九丈为小方面积两面积相加得一千二百五十丈以合原数也【此带纵开三乘方法】
    设如有一方台俱系正方石砌成其用石之块数与每一石之面积等其共石之体积为五十三万七千八百二十四寸问用石之块数及每一石之边数若干
    法借一根为每一石之边数自乘得一平方为每一石之面积亦卽所用石之块数再乘得一立方为每一石之体积与所用石之块数一平方相乘得一四乘方为共石之体积与五十三万七千八百二十四寸相等乃以五十三万七千八百二十四寸为四乘方积用开四乘方法算之得一十四寸为一根之数卽每一石之边数自乘得一百九十六寸为每一石之面积亦卽所用石之块数再乘得二千七百四十四寸为每一石之体积与所用石之块数相乘得五十三万七千八百二十四寸以合原数也【此开四乘方法】
    设如有二十四正方体又有一扁方体共积八百二十九万四千四百寸扁方体之髙与正方体之边数等扁方体之长与阔俱与正方体之面积等问正方体扁方体之边数各若干
    法借一根为正方体每边之数亦卽扁方体之髙数以一根自乘得一平方为正方体之面积亦卽扁方体之长与阔再乘得一立方为正方体之积以二十四乘之得二十四立方为二十四正方体之共积又以扁方体之长阔一平方自乘得一三乘方再以髙一根乘之得一四乘方为扁方体之积两积数相加得一四乘方多二十四立方与共体积八百二十九万四千四百寸相等乃以八百二十九万四千四百寸为带纵四乘方积用带纵开四乘方法算之得二十四寸为一根之数卽正方体之每边亦卽扁方体之髙自乘得五百七十六寸为正方体之面积亦卽扁方体之长与阔再乘得一万三千八百二十四寸为一正方体之积以二十四乘之得三十三万一千七百七十六寸为二十四正方体之共积又以扁方体之长阔五百七十六寸自乘再以髙二十四寸乘之得七百九十六万二千六百二十四寸为一扁方体积两积相加得八百二十九万四千四百寸以合原数也【此带纵开四乘方法】
    设如有商人贸易第一次之银数比原本银加一倍第二次之银数与第一次银自乘再乘之数等第三次之银数与第一次银自乘又乘第二次银之数等将第三次之银数与第二次之银数相加得三万三千二百八十两问原本银数及每次银数各若干
    法借一根为原本银数则第一次之银数为二根自乘再乘得八立方为第二次之银数以第一次自乘之四平方与第二次之八立方相乘得三十二四乘方为第三次之银数与第二次之银数八立方相加得三十二四乘方多八立方与三万三千二百八十两相等三十二四乘方多八立方旣与三万三千二百八十两相等则一四乘方多四分立方之一必与一千零四十两相等乃以一千零四十两为带纵四乘方积用带纵开四乘方法算之得四两为一根之数卽原本银数也倍之得八两为第一次之银数自乘再乘得五百一十二两为第二次之银数又以第一次银数八两自乘之六十四两与第二次之银数五百一十二两相乘得三万二千七百六十八两为第三次之银数与第二次之银数相加得三万三千二百八十两以合原数也【此带纵开四乘方法】
    设如有一小长方体阔为髙之二倍长为髙之三倍又有一大长方体其每边之比例与小长方体同其髙数与小长方体长阔相乘之数等体积八万二千九百四十四尺问二长方体长阔髙各几何法借一根为小长方体之髙则阔为二根长为三根长阔相乘得六平方为大长方体之髙倍之得十二平方为大长方体之阔三因之得十八平方为大长方体之长长阔相乘再以髙乘之得一千二百九十六五乘方为大长方体积与八万二千九百四十四尺相等一千二百九十六五乘方旣与八万二千九百四十四尺相等则一五乘方必与六十四尺相等乃以六十四尺为五乘方积用开五乘方法算之得二尺为一根之数卽小长方体之髙倍之得四尺卽小长方体之阔三因之得六尺卽小长方体之长长阔相乘得二十四尺卽大长方体之髙倍之得四十八尺卽大长方体之阔三因之得七十二尺卽大长方体之长长阔相乘再以髙乘之得八万二千九百四十四尺以合原数也【此开五乘方法】
    设如有大小二正方体大方体积比小方体积多一千七百四十四寸以小方边与大方边相乘得一百四十寸问二正方体之边数体积各几何法借一根为小方体每边之数以一根除一百四十寸得一根之一百四十寸为大方体每边之数以一根自乘再乘得一立方为小方体积数以一根之一百四十寸自乘再乘得一立方之二百七十四万四千寸为大方体积内减小方体积一立方余一立方之二百七十四万四千寸少一立方与一千七百四十四寸相等两边各以立方乘之得一千七百四十四立方与二百七十四万四千寸少一五乘方相等两边各加一五乘方得一五乘方多一千七百四十四立方与二百七十四万四千寸相等乃以二百七十四万四千寸为带纵五乘方积用带纵开五乘方法算之得十寸为一根之数卽小方体每边之数以十寸除一百四十寸得一十四寸卽大方体每边之数以小方体每边十寸自乘再乘得一千寸为小方体积以大方体每边十四寸自乘再乘得二千七百四十四寸为大方体积两体积相减余一千七百四十四寸以合原数也【此带纵开五乘方法】
    设如有大小二正方体共积四千一百二十三寸以小方边与大方边相乘得四十八寸问二正方体之边数体积各几何
    法借一根为小方体每边之数以一根除四十八寸得一根之四十八寸为大方体每边之数以一根自乘再乘得一立方为小方体积以一根之四十八寸自乘再乘得一立方之一十一万零五百九十二寸为大方体积两体积相加得一立方多一立方之一十一万零五百九十二寸与四千一百二十三寸相等两边各以立方乘之得四千一百二十三立方与一五乘方多一十一万零五百九十二寸相等两边各减一五乘方得四千一百二十三立方少一五乘方与一十一万零五百九十二寸相等乃以一十一万零五百九十二寸为带纵五乘方积用带纵开五乘方法算之得三寸为一根之数卽小方体每边之数以三寸除四十八寸得十六寸为大方体每边之数以小方体每边三寸自乘再乘得二十七寸为小方体积数以大方体每边十六寸自乘再乘得四千零九十六寸为大方体积数两体积相加得四千一百二十三寸以合原数也【此带纵开五乘方法】
    设如有一长方体积二千一百八十七尺其髙数自乘与阔等阔数自乘与长数等问髙阔长各若干法借一根为髙自乘得一平方为阔以阔自乘得一三乘方为长长阔相乘得一五乘方再以髙乘之得一六乘方为长方体积与二千一百八十七尺相等乃以二千一百八十七尺为六乘方积用开六乘方法算之得三尺为一根之数卽长方之髙自乘得九尺卽长方之阔以阔自乘得八十一尺为长方之长乃以长阔相乘再以髙乘之得二千一百八十七尺以合原数也【此开六乘方法】
    设如甲丙正方花园二所园中各有正方水池一面甲池每边为丙池每边之三倍甲园每边与甲池之面积等丙园每边与丙池之面积等若以两园之面积相乘得五百三十万八千四百一十六尺问园池每边各若干
    法借一根为丙池每边之数则甲池每边之数为三根以一根自乘得一平方为丙池之面积卽丙园每边之数自乘得一三乘方为丙园之面积以三根自乘得九平方为甲池之面积卽甲园每边之数自乘得八十一三乘方为甲园之面积两园之面积相乘得八十一七乘方与五百三十万八千四百一十六尺相等八十一七乘方旣与五百三十万八千四百一十六尺相等则一七乘方必与六万五千五百三十六尺相等乃以六万五千五百三十六尺为七乘方积用开七乘方法算之得四尺为一根之数卽丙池每边之数三因之得十二尺卽甲池每边之数以甲池每边十二尺自乘得一百四十四尺为甲池之面积卽甲园每边之数以丙池每边四尺自乘得一十六尺为丙池之面积卽丙园每边之数以甲园每边一百四十四尺自乘得二万零七百三十六尺卽甲园之面积以丙园每边十六尺自乘得二百五十六尺卽丙园之面积乃以两园面积相乘得五百三十万八千四百一十六尺以合原数也【此开七乘方法】
    设如有甲乙丙三长方体甲方之髙为阔二分之一乙方之髙与阔为甲方之二倍丙方之髙与阔为甲方之三倍俱不知长甲方体积与面积自乘之数等乙方之体积与髙阔相并乘甲方面积之数等丙方之体积与乙方体积自乘再乘之数等今但知丙方体积八十八万四千七百三十六丈问三方髙阔长各若干
    法借一根为甲方之髙则甲方之阔为二根乙方之髙亦为二根乙方之阔为四根丙方之髙为三根丙方之阔为六根以甲方髙一根与阔二根相乘得二平方卽甲方之面积自乘得四三乘方卽甲方之体积乙方髙二根与阔四根相并得六根与甲方面积二平方相乘得十二立方卽乙方之体积自乘再乘得一千七百二十八八乘方卽丙方之体积与八十八万四千七百三十六丈相等一千七百二十八八乘方旣与八十八万四千七百三十六丈相等则一八乘方必与五百一十二丈相等乃以五百一十二丈为八乘方积用开八乘方法算之得二丈为一根之数卽甲方之髙倍之得四丈卽甲方之阔髙阔相乘得八丈卽甲方之面积自乘得六十四丈卽甲方之体积又将甲方髙二丈倍之得四丈卽乙方之髙将甲方阔四丈倍之得八丈卽乙方之阔髙阔相并得一十二丈与甲方面积八丈相乘得九十六丈卽乙方之体积又以髙四丈阔八丈相乘得三十二丈以除体积九十六丈得三丈卽乙方之长又将甲方髙二丈三因之得六丈卽丙方之髙将甲方阔四丈三因之得一十二丈卽丙方之阔以乙方体积九十六丈自乘再乘得八十八万四千七百三十六丈卽丙方之体积又髙六丈阔十二丈相乘得七十二丈以除体积八十八万四千七百三十六丈得一万二千二百八十八丈卽丙方之长也【此开八乘方法】
    设如有客船不言数但云每船之人数与船数等每人之本银数与船数自乘再乘之数等其共银自乘之数为六千零四十六万六千一百七十六两问船数人数各若干
    法借一根为船数亦为每船之人数以一根自乘得一平方为共人数再乘得一立方为每人本银数与一平方相乘得一四乘方为共银数以一四乘方自乘得一九乘方为本银自乘之数与六千零四十六万六千一百七十六两相等乃以六千零四十六万六千一百七十六为九乘方积用开九乘方法算之得六为一根之数卽船数亦卽每船之人数自乘得三十六为共人数再乘得二百一十六为每人之银数以三十六人乘之得七千七百七十六两为共银数自乘得六千零四十六万六千一百七十六两以合原数也【此开九乘方法】
    御制数理精蕴下编卷三十六


用手机扫一下二维码,在手机上阅读或分享到微信朋友圈

图书分类